E ThermoAnalytics Total Thermal Solutions

All Things Battery with TAITherm

Scott Peck

Agenda

Background

- Design issues
- Modeling issues

TAITherm Battery Models

- Physical description
- Modeling concepts
- Relative strengths

Input Requirements

- Electrical parameters
- Thermal parameters

Use in Typical Applications

- Single cells
- Pack / module
- System integration
- Future Development
 - Runaway model
 - Life model

Agenda

Background

- Design issues
- Modeling issues
- TAITherm Battery Models
 - Physical description
 - Modeling concepts
 - Relative strengths

Input Requirements

- Electrical parameters
- Thermal parameters
- Use in Typical Applications
 - Single cells
 - Pack / module
 - System integration
 - Future Development
 - Runaway model
 - Life model

Purpose of Battery Modeling Electric Vehicle Problems – All Thermal Problems

THE MORE HINDU SEARCH
Home News Opinion Business Sport S & T Features Entertainment Books Min St BLOGS CARTOON COLUMNS EDITORIAL INTERVIEW LEAD LETTERS COMMENT OPEN PAGE READ OPINION * OPEN PAGE March 10, 2013 Updated: March 10, 2013
Can electric vehicles withstand the Indian heat?
Ads by Google VENKAT VISWANATHAN COMMENT (4) · PRINT · T T GLike Share {20 Topics With the unveiling of the National Electric Mobility Mission Plan 2020, Prime Minister Manmohan Singh has urged manufacturers to adopt electric vehicles in an attempt to reduce our dependence on imported oil. The ambitious plan aims
and finance manufacturing and engineering to produce 6-7 million electric vehicles by 2020 with an estimated fuel savings of 2.2-2.5 million tonnes. Vehicle manufacturers in India have a tough road ahead in meeting this goal and tailoring electric vehicles for the Indian market. SIGN
HOME BUSINESS MARKETS WORLD POLITICS TECH OPINION BREAKINGVIEWS New Electric Cars Hot Deals, Save UpTo 40%
Tesla grapples with impact of battery fire in U.S.

Battery Design Issues Occur at Different Time and Length Scales

- Electrode-level issues
 - Coupled electro-chemical diffusion processes
 - Ion transport, charge depletion, etc.
 - Materials
 - Length scale ~ electrode pore size
- Cell-level issues
 - Local potential differences between electrodes
 - Distribution of current density (and heating)
 - Distribution of capacity / state-of-charge
 - Local temperature
 - Abuse tolerance (overcharge or overdischarge, crush)
 - Length scale ~ cell dimensions

Pack-level issues

- Cell-to-cell variations
 - Terminal voltage
 - Thermal boundary conditions (convection, conduction, radiation)
 - Cell history
 - Drive cycle load
 - Propagation of thermal runaway
 - Length scale ~ pack dimensions

Battery Model Applies to Different Topologies

Pouch

- Alternating layers of cathode and anode
- Multiple layers in parallel
- Contained in flexible pouch

Prismatic

 'Jellyroll' flattened inside rigid can structure (racetrack)

Cylindrical

- Jellyroll wound around a central post
- Contained in rigid can
- 18650: 18mm dia, 650 mm height
- Chemistries
 - Li-ion flavors, NiMH, alkaline, leadacid

Battery Model Thermal Scenarios

Batteries are transient devices

- Cooling System Faults
- Drive Cycles
- Load Balancing
 - Avoiding overcharge/discharge
- Hot Soak
 - Time at temperature reduces life
- Preheating for Cold Start
 - Cold batteries lose capacity
- Abuse ToleranceThermal Runaway

Agenda

Background

- Design issues
- Modeling issues

TAITherm Battery Models

- Physical description
- Modeling concepts
- Relative strengths

Input Requirements

- Electrical parameters
- Thermal parameters

Use in Typical Applications

- Single cells
- Pack / module
- System integration
- Future Development
 - Runaway model
 - Life model

Battery Model Overview

TAITherm supports 3 battery models:

Battery Models in TAITherm

- Empirical
 - Model parameters derived from measured performance data
- Electrical and thermal behaviors are coupled
 - Battery resistance depends on temperature and depth of discharge
 - Temperature depends on heating from I²R and chemical reactions
- Battery models compute an imposed heat on the battery geometry
 - To compute the imposed heat, some electrical circuit equations must be solved simultaneously
 - Equivalent circuit models have one circuit equation per cell, and one value of heat applied to the entire cell
 - Distributed model have as many circuit equations as there are elements describing the electrodes, and the heat is computed for each element

Battery Model Basics

Electrical model

 relates current transfer between electrodes to voltage difference across electrodes

Resulting heat

 applied to the thermal model

NTG Equivalent Circuit Model

NTG Distributed Model

- Electrical domain modeled with geometric mesh
 - Collector plates
- NTG current-voltage characteristic applied between each element pair in electrodes
- Local current density
- Local depth of discharge
- Local parameters (U, Y)
- Local heating
- Voltage distribution on collector plates

Back to equivalent circuit model...

NREL Equivalent Circuit

'Bus nodes' Are Used to Connect Cells

Bus nodes are lumped capacitance nodes

- Voltage computed by solver so that current in equals current out
- Total current at positive terminal is imposed
 - Bus node name required to be "packPositiveTerminal"
- Voltage at pack negative terminal is set to zero
 - Bus node name required to be "packNegativeTerminal"
- Other bus node names are arbitrary
- Connections are identified in the config file
 - Each cell definition has a cathode bus and an anode bus, thus:
 - Cell 1 cathode bus = "packPositiveTerminal"
 - Cell 1 anode bus = "bus node 1"
 - Cell 2 cathode bus = "bus node 1"
 - Cell 2 anode bus = "packNegativeTerminal"
- If a lumped capacitance part has the name of a bus node, it will be used by the solver

Voltage, current appear in post-processor

Model diagnostics

Cells Can Be Connected in Arbitrary Configurations

Current distributions are found by adjusting node voltages until net current into node is zero

Cells Can Be Connected in Arbitrary Configurations

Series / parallel combinations

Comparison of Equivalent Circuit and Distributed Models

Equivalent Circuit

- Sacrifices detail for speed
- Appropriate for pack modeling
 - Cooling concept studies
 - Cell-to-cell variability
 - Fault conditions (shorts)
 - Drive cycle analyses

Distributed Model

- Sacrifices speed for detail
- Most appropriate for cell modeling
 - Cell size / aspect ratio
 - Tab size / location
 - Hot-spot analysis
 - Uniformity of utilization of active material (a)

HThermoAnalytics

-128 mm-

nant Air Cool

Comparison of Models

	NTG Distributed	NTG Equiv. Circuit	NREL Equiv. circuit
Voltage distribution on electrode	Computed	NA	NA
Cell heating	Applied locally on electrodes	Applied uniformly to cell mass	Applied uniformly to cell mass
Temperature distribution on electrode	Computed locally from local heating	Computed locally from global heating	Computed locally from global heating
Cell to cell variation of parameters	Not allowed	Yes	Yes
Pack circuit topology	Possible, connections must be meshed	Yes, connections created virtually	Yes, connections created virtually
Charge carrier depletion	DoD computed locally	DoD computed for cell	DoD computed for cell
Transient voltage effects	No	No	Yes
Fault analysis	Possible, but very cumbersome	Possible, but cumbersome	Yes
Cell parameter inputs	U, Y, constant dU/dT	U, Y, constant dU/dT	Functional Rs, R _i 's, t's, Rcl, dU/dT
Circuit topology inputs	None	List of connections	List of connections
Compute time Mesh size	Longer Larger	Shorter Smaller	Shorter Smaller

Agenda

Background

- Design issues
- Modeling issues
- TAITherm Battery Models
 - Physical description
 - Modeling concepts
 - Relative strengths

Input Requirements

- Electrical parameters
- Thermal parameters
- Use in Typical Applications
 - Single cells
 - Pack / module
 - System integration
 - Future Development
 - Runaway model
 - Life model

Data Needed for Input to Models

- Readily available from supplier:
 - Cell capacity, electrode area
- Available from supplier or measured by user:
 - Discharge curves at different C-rates or pulse profiles
 - voltage versus depth-of-discharge
 - sufficient to resolve curve at beginning & end of discharge
- Difficult to obtain from supplier:
 - Cell material properties
 - material thicknesses
 - material properties
 - (density, specific heat, conductivity)

Battery Model Inputs

NTG equiv. circuit	NTG distributed	NREL equiv. circuit				
U (= f[DoD,T])	U (= f[DoD,T])	$V_{ocv} (= f[DoD,T])$				
Y (= g[DoD,T])	Y (= g[DoD,T])	$R_s (= g[DoD,T])$				
		$R_i (= r[DoD, T])$				
		$\tau_i \ (= t[T])$				
dU_{oc}/dT (= constant)	dU_{oc}/dT (= constant)	$dU_{oc}/dT (= u[DoD,T])$				
Bus node list	*	Bus node list				
Current	*	Current				
Cell list	*	Cell list				
Anode bus	*	Anode bus				
Cathode bus	*	Cathode bus				
Initial DoD	Initial DoD	Initial DoD				
Electrode area	*	Electrode area				
Cell capacity	Cell capacity / area	Cell capacity				
	Anode/Cathode conductivity					
* Implied or derived from model/geometry set-up						

Battery Model Parameters are Obtained From Cell Discharge Data

NTG parameters

- derived from curves of voltage vs time for constant charge or discharge
- NREL parameters
 - derived from curves of voltage vs time during prescribed current pulses at (approximately) constant DoD

Up to now, the discussion has been independent of battery chemistry. The parameter values determined by the chemistry for a particular cell.

NTG Coefficients Derived from Voltage Curves at Constant Current for Different Discharge Rates

 $I = Y(\Delta V - U)$

- Consider V as a function of C-rate (current density) at different values of DoD:
 - Current density = C_{rate} * capacity / area
- Fit a line through the data at constant DoD

NREL Coefficients Obtained from Voltage Measurements During Pulsed Current Test Profile

- Hybrid Pulse Power Characterization (HPPC) test as specified in "FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles" (DOE/ID-11069, published October 2003)
 - Fixed duration current charge / discharge cycles at successive increasing values of DoD

TAI is Developing a Tool to Simplify Battery Parameter Generation From Test Data

Agenda

Background

- Design issues
- Modeling issues

TAITherm Battery Models

- Physical description
- Modeling concepts
- Relative strengths

Input Requirements

- Electrical parameters
- Thermal parameters

Use in Typical Applications

- Single cells
- Pack / module
- System integration
- Future Development
 - Runaway model
 - Life model

NTG Equivalent Circuit Model – Single Cell

- Thermal domain modeled with mesh
- Electrical domain modeled with lumped capacitance nodes created virtually
- Part naming convention links electrical and thermal domains
- No restrictions on thermal boundary conditions

NTG Equivalent Circuit Model – Single Cell

 Thermal results show temperature distribution

NTG Equivalent Circuit Model – Single Cell

 Electrical results are also available in post-processor

NTG Distributed Model – Single Pouch Cell

- Distributed model employs a mesh for the thermal and the electrical domain
 - Separate parts for cathode and anode
- Part naming convention links electrical and thermal domains

NTG Distributed Model – Single Pouch Cell

 Voltage distribution is rendered in the post-processor

NTG Distributed Model – Single Pouch Cell

 Time plots of terminal voltage are available as well

	Part Element Rot-CE	r Hide Hide Uns Show	Neighbor Inv Hide Assi	TAITherm Results Plot	TN UU Smooth Lighting V	
eometry E <u>d</u> itor	Analyze Post Process				Voltage vs Time	
Elapsed Time (sec) 315 Time Step 21 Animate Speed: + • • • • • • • • • • • • • • • • • •			3100 3000 2900 2900 200 2000 2			
				Format Export Imag	e Print 🔒 Add '	To Report Close
Currents Bound	ary Conditions					
	Display a	is Current Density		D A Name	Type Standard	Hidden Geom
	Cu	irrent (A)		2 anodeTab_1	Standard	Shell
	Incident	Outgoing	Net	3 cathode_1 4 cathodeTab_1	Standard Standard	Shell
Conduction Current			97.9838	5 cel_1	Multi-Layer	Hidden Shell
Y(Vp - Vn)	0	0	0	6 thermalAnodeTab_1	Standard	Hidden Shell
Imposed Current			-98	8 positiveLead	Standard	Shell
				9 negativeLead Select All	Assigned, w/ Geometry	Shell Deselect All

NTG Distributed Model Applications

- Effects of tab size/location, cell size, collector thickness:
 - Voltage gradients on collector plates
 - Non-uniform current density
 - Non-uniform ion depletion
 - Non-uniform heating

- Modules or packs are modeled as groups of individual cells
- Effect of cooling strategies can be investigated

- Case with air forced through pack at various flow rates
- Advection links between fluid nodes models coupling to fluid flow
- Provides quick alternative to coupled CFD
- Investigate nonuniform cooling in pack

TAITherm - pa	ckWith500AirStreamCooling	.tdf *			
<u>File E</u> dit <u>V</u> iew	<u>T</u> ools <u>U</u> nits <u>W</u> indow <u>H</u>	<u>i</u> elp			
	Part Element	Kot-Ctr Hide Hide Uns She	Neishbor Inv Hide		× ×
Geometry Edite	or Analyze Post Proces	ss			
Elapsed Time (se	c) 1370				
Time Ste	48 48				
Anima	ate Speed: + 🖓	- Re;	eat 🕱 Dynamic Update		
Results Rela	tions Pass/Fail Plot/Ex	port Environment Anno	tations Notes		
Part 4	4	Part Type: Multi	Layer		
	4	Average Temperature (°C)			
	Front	30.5599 Oisplay He	t Rates/BCs		
	2	30.5835 Display Her	it Rates/BCs		
	3	30.5835 O Display Her	it Rates/BCs		
	Back	30.5747 Display He	it Rates/BCs		
				7	
				18.0 20.5 23.0 25.5 28.0 30.5 33.0 35.5	38.0
				Visualize Front & Back 💌	
				Display Thermal Results Temperature	
Heat Dates	David and Canadilliana				
neat Rates	boundary conditions				
	2	Display as Flux		18 Auto Scale	32
	He	at Rate Flux (W/m*)	Net	Messages	
Q Conduction			52.3309		
Q Convection	0	29.2635	-29.2635	 22) Thermal results data was written by version 10.2a-2011-12 23) Opened '\kelvin\pub\sdp\batteryModeling\batteryController\controllerDemo\packWith50 	0AirStreamCooling.tdf
Q Radiation	417.418 *	475.953 *	-58.5349	24) Geometry rotated successfully 25) Successfully wrote the image file	
Q Solar			0	\kelvin\pub\sdp\batteryModeling\batteryController\controllerDemo\fullMage.png	
w imposed			·	20) Succession wrote the image the \kelvin\pub\sdp\batteryModeling\batteryController\controllerDemo\noFluids.png	
				27) Successfully wrote the image file \\kelvin\pub\sdp\batteryModeling\batteryController\controllerDemo\justFluidNodes.png	•
				28) Image export canceled	

TAITherm - packWithEdgeCooling.tdf * File Edit View Tools Units Window Help Edge conduction to Ø.1 1-1 Ξ **♦**-\$**% ∦**→**∦ \$**+₿ » liquid-cooled plate Part Element Assign Rot-Chr Hide HideUns Show Neighbor Inv Hide Model Browse Β× Aodel Size (mm) X = 537.277Geometry Editor Analyze Post Process Y = 3738.5 Z = 442.284 -Part Selecto 0 ID Visible Size (mm) Name X = 537.277 ▼ 139 Ď -CoolingPlate Y = 3738.5 Z = 442.284 ω Total Parts: 141 Visible Counts: Parts = 139Conduct Parts Assembly Curves Environ Properties Scenario Elements = 86 Temperature Part Type Assigned Standard Ŧ Calculated Transparent Electrical Input Front Middle Back Material Aluminum Enable Water Wash Thickness (mm 1.5 Edit... Surface Properties Surface Condition Default Surface 0.90 • Texture Map Initial Temperature (°C Imposed Heat (W) Value Seed SS 20 Curve 0 Bypass SS Display Default -Routine Messages Ð× Convection None • 13) Using Graphics Level 2 Using OpenGL Version 4.0 14) This TDF file was written with RadTherm 10.2a-2011-14 15) Model statistics: Elements: 869 Parts: 141 Shell Elements: 869 Quads: 869 16) Thermal results data was written by version 10.2a-2011-14 17) Opened `\kelvin\pub\sdp\batteryModeling\batteryController\controllerDemo\packWithEdgeCooling.tdf 18) Geometry rotated successfully

- Evaluate effectiveness of cooling strategies
 - Temperature limits
 - Cell-to-cell cooling uniformity
- Determine requirements for cooling system parameters
 - e.g. Flow rates

NTG Distributed Model – Pack During Drive Cycle Analysis

Combined Equivalent Circuit & Distributed Models

TAITherm - NTGeqcPackwithBothPlugins.tdf* It is possible to File Edit View Tools Units Window Help 点 Ac 1+1 .♦-\$% **A** » combine models Part Assign Element Rot-Chr Hide HideUns Show Neighbor Inv Hide BX Model Size (mm): Model Browse X = 500 Editor Analyze Post Process Geometry Y = 200 Z = 511.066 Part Select 0 Edit Name Edit ID Visible Size (mm): Investigate detailed X = 240 ▼ 13 ▼ 🗄 🔳 D distanode_3 Y = 160.002 Z = 511.066 8 Total Parts: 26 electrical and Visible Counts: Parts = 21 Parts Assembly Curves Environ Conduct Properties Scenario thermal behavior of Elements = 84 Voltage Part Type Assigned a cell of interest in a Standard -Calculated pack without the X Electrical Input computational electricalCopper Material Thickness (mm) 0.16 overhead of a full Initial Voltage (mV) Current (A) Seed SS Value 8000 0 distributed model Bypass SS Curve 23 Part List Hidden ID Name Туре Geom eqcCell_1 Multi-Layer Shell eqcCell_2 Multi-Layer 2 Shell distcell_3 Multi-Layer Shell 12 distcathode_3 Standard Shell 13 Standard Shell distanode 3 14 eqcCell_4 Multi-Laver Shell -15 eqcCell 5 Multi-Layer Shell Select All Invert Selection Deselect All Close

NREL Equivalent Circuit Model of Transient Pulse Data

Terminal voltage predicted by TAITherm compared to transient voltage data

NREL Equivalent Circuit Model – Pack of Cylindrical Cells

- Radiation between complex geometry is quickly and accurately modeled
 - Can be key component of propagation of thermal runaway

TAITherm - NRELeqcPa	ack_reference.tdf		and the second second		
<u>File Edit View Tools</u>	<u>U</u> nits <u>W</u> indow <u>H</u> elp				
	Part Element Kot-Ckr Hide	Uns Show Neighbor Inv Hide	Assign	Model Size (mm)	
Coometer Editor An	Model Browser			X = 54	
	laiyze Post Process			Y = 36 Z = 65.2	
Part Selector					
Name				Visible Size (mm) X = 54	
cell_5_jr		▼ 13 ▼ 📃	! 🧷	Y = 36	
Total Parts: 23			8	Z = 65.2	
Parts Assembly (Temperature Par Assigned Mu	Curves Environ Conduct Prope t Type # of Layers C uth-Layer ▼ 2 ♣ 0	rties Scenario onduction Type cylindrical V Solid V		Visible Counts: Parts = 21 Elements = 525	
	Transparent				
	E Part List			X	
		Туре	Hidden	Geom	
	1 cell_1_jr	Multi-Layer		Shell	
Front Middle	2 cell_1_top	Multi-Layer Steadard		Shell	
Material	4 cell_2_jr	Multi-Layer		Shell	
18650 Jellyroll	5 cell_2_top	Multi-Layer		Shell	
	6 cell_2_bottom 7 cell_3 in	Standard Multi-Laver		Shell	
Thickness r r (mm	8 cell_3_top	Multi-Layer		Shell	
rinckness, ro - II (init	9 cell_3_bottom	Standard		Shell	
-Initial Temperature (10 cell_4_jr	Multi-Layer		Shell	
Cond SC	11 Cell_4_top 12 cell_4_hottom	Multi-Layer Standard		Shell	
Bynass SS 2	13 cell 5 ir	Multi-Layer		Shell	
() b)pace co	14 cell_5_top	Multi-Layer		Shell	
	15 cell_5_bottom	Standard		Shell	
	10 Cell_6_r	Multi-Layer Multi Layer		Shell	lav Default
	18 cell 6 bottom	Standard		Shell	
	19 interConnector	Standard		Shell	
	20 positiveConnector	Standard		Shell	messages
	21 negativeConnector	Standard		Shell	vel 2
	22 packPositiveTerminal	Lumped Capacitance		No Geom	n 4.0 vritten with RadTherm 11 1a-2013-07-preLoircuit
	Select All	Invert Selection	Deseled	tAll	Elements: 525 Parts: 23
		Close			144 ds: 381
		Cluse			a was written by version 11 1a-2013-07-prel-circuit
				5) Opened "\\kelvi	in\pub\sdp\batteryModeling\WRELeqc\tutorials\WRELeqcPack_reference.tdf

Design Study for OEM

- Single pack (24 cells) and case
- ➡ 40 A current

Underbody Analysis – Full Pack with Exhaust

- ➡ 96 cells, battery case, exhaust line, insulation
- ➡ 25 A current

Agenda

Background

- Design issues
- Modeling issues

TAITherm Battery Models

- Physical description
- Modeling concepts
- Relative strengths

Input Requirements

- Electrical parameters
- Thermal parameters

Use in Typical Applications

- Single cells
- Pack / module
- System integration

Future Development

- Runaway model
- Life model

NREL Thermal Runaway Model

- Describes heating from unwanted chemical reactions at elevated temperatures
 - Elevated temperatures due to hot ambient conditions, I²R heating at shorts, internal discharge
- Temperature-dependent imposed heating derived from reaction kinetics

 Use to evaluate risk of thermal runaway or failure for plausible failure scenarios, evaluate mitigation strategies

NREL Life Predictive Model

- Describes capacity and resistance changes over time as a function of stress statistics
 - Calendar fade: function of T(t), SOC(t)
 - Cycling fade: function of DSOC, T, C_{rate}, DT
- TAITherm runs generate life operating statistics, which are then input to life predictive model
- Use to estimate time to end-of-life, performance characteristics at end-of-life

Fig. 4. Enlargement of Filtered and Unfiltered Battery Test Cycle.

Summary

- TAITherm can be used to address battery thermal design issues
 - Cell, pack, and system integration
- 3 battery models in TAITherm provide flexible tools for optimized design / analysis process
 - Efficient transient modeling
 - Representative thermal environment

Validation info:

- Peck, S., Pierce, M., "Development of a Temperature-Dependent Li-ion Battery Thermal Model", SAE 2012-01-0117
- Peck, S., Olszanski, T., Zanardelli, S., Pierce, M., "Validation of a Thermal-Electric Li-Ion Battery Model", SAE 2012-01-0332
 - Peck, S., Velivelli, A., Jansen, W., "Options for Coupled Thermal-Electric Modeling of Battery Cells and Packs", SAE 2014-01-1834

Questions

Please contact:

- Scott Peck, Senior Research Engineer
 - Scott.Peck@ThermoAnalytics.com
 - +1-906-482-9560 (x208)

Technical Support

- techsupport@ThermoAnalytics.com
- +1-248-380-4348 (press 2)

Sales

- sales@ThermoAnalytics.com
- +1-906-482-9560 (press 1)

