Exceed Your Electrification Goals With Thermal Simulation

TAI Webinar, March 5, 2020

Zachary J. Edel, Ph.D.

HarmoAnalytics

Agenda

- EV/HEV Design
- Battery Modeling
- Drive Cycle Simulation
- Cabin Comfort
- Lifetime and Durability
- Design for Safety
- Multi-Physics Coupling

EV Component Modeling

- Electric motors
- Electrical inverters and wiring
- Heat exchangers and cold plates
- Vehicle energy management
- Battery packs
- System Modeling

EV Operating Temperature Ranges

- EV components have vastly different operating ranges than ICE vehicle components
- EV thermal management systems require separate coolant loops that exchange heat with one another

"xEV Thermal Management – Model based development and model predictive control approaches", 3rd annual conference 2020 automotive thermal management, 21 January 2020, Dr. Cedric Rouaud

Environmental effects on EV Range

• EV range is strongly influenced by temperature

Depends on battery type

Energy consumption per mile averaged across a fleet of Nissan Leaf EVs over a full year. (Environ. Sci. Technol. 49, 2015.)

Influence of temperature on energy performance of different battery types (Energies 2019, 12, 946)

HVAC Impact

- Climate control loads cause significant range reduction
 - 17-37% in summer*
 - 17-54% in winter*
- Possible design improvements
 - Improved insulation
 - Correlation of BTMS with the HVAC system
 - Thermo-electric generator based heat recovery systems
 - Proper HVAC sizing for cabin comfort

EV Power consumption with operating the airconditioner in different environments. Shibata et. al. JEPE 9 (2015)

Current Challenges in EV Batteries

- Thermal Management
- Life span: increasing both cycle stability and calendar age
- Performance in harsh environments:
 - Difficult to optimize performance for wide range for temperatures
- Capacity
 - Driving range
- Charging time
- Safety: i.e. avoiding thermal runaway
- Cost
 - Need to be reduced to compete with gasoline vehicles

TAITherm Battery Thermal-Electric Approach

• Electrical and thermal behaviors are coupled

Battery resistance depends on temperature and DoD

T depends on resistive heating and chemical reactions

- Battery models compute an imposed heat on the battery geometry
- Imposed heat computed by solving electrical circuit equations

TAITherm Battery Models Overview

NTG Equivalent Circuit Model

NTG Distributed Model

NREL Equivalent Circuit Model

Transient Drive Cycle Simulation

CFD Coupling

- Spatial variance occurs for heat transfer coefficients
- Flow re-direction at bends
- Secondary flow
- Local turbulence
- Heat transfer enhancement structures
- Converging and diverging streams

Imported HTC [W/m²K]

Drive Cycle

- Enhanced CFD-Coupling CoTherm Template
 - Signal simplification
 - Surrogate Model Creation
 - CFD Recycling
- Simulate any Driving Profile with Added Efficiency
 - Optimized Coupling Methods
 - Minimum Amount of CFD
 - Maximum Time Step Size
- Fully Automated Process
- Fully Customizable Process

← <u>←</u> <u>G</u>enerate Table Close

Edit Table Variable

12

 \odot \odot

1600

Efficient Use of Computational Resources

Human Thermal Extension

Human Physiology Model

- 20+ body segments
- Thermal Model
 - Metabolic Heating
 - Shivering
 - Respiration
 - Sweating
 - Peripheral Vasomotion
- Predicts Skin Temp, Interior Tissue Temps, Blood Pool Temp, Core Temp
- Berkeley Comfort Modeling: Is the passenger comfortable?

14

Methods Available

Localized heating and cooling

Heated Steering Wheel

Heated Seat

Radiant Panels

Battery Ageing Mechanisms

- Battery ageing is caused by many complex and coupled electrochemical mechanisms
- First principles models exist, but are highly battery chemistry dependent and not yet able to capture all relevant mechanisms.
- A more general semi-empirical model is more practical and can be applied to multiple different batteries by refitting the parameters

Cathode

Images from: Ageing mechanisms in lithium-ion batteries," J. Power Sources, 147 (2005) 269-281

17

Simulation Approach: NREL Lifetime Outputs

State-Of-Health (SOH) Results

Thermal Runaway

- If the battery temperature gets too high, thermal runaway can happen
 - This can be due to a certain drive cycle on a hot day or a sudden short-circuit
- European law prescribes a mininum time of 5 minutes between the start of thermal run-away and the car to catch fire
- The requires proper management of the heat propagation

NREL Thermal Runaway Model

- Describes heating from unwanted chemical reactions at elevated temperatures
 - Elevated temperatures due to hot ambient conditions, I²R heating at shorts, internal discharge
- Temperature-dependent imposed heating derived from reaction kinetics
 - Predicts heat released by reactions between electrode, separator, and electrolyte materials
 - Uses empirical reaction rate data
- Use to evaluate risk
 - Cell-to-cell propagation of failure
 - Evaluate runaway mitigation strategies

Thermal Runaway

12 min

29 min

22

Multi-Physics, Scripting, and Automation

• CAE often requires complex processes

- Coupling different physics
- Simplified analysis
 - Drive cycle / dynamic driving
 - Lifecycle modeling
- Multi-simulation tasks
 - Sensitivity studies / DoE
 - Optimization
- These processes may involve multiple pieces of software, customized scripts, and other domain-specific 'glue' to automate
- CoTherm intends to provide an efficient, versatile, and intuitive way of implementing these processes

Process Automation and CAE Coupling

Co-Simulation Approach Comparison

Approach	Advantages	Disadvantages
3D – 3D	Highly accurate	Slow, difficult to integrate
1D/2D – 3D	Moderately accurate	Moderately slow, difficult to integrate
1D/2D/3D – Nodal Net	Easy to integrate, moderately fast	Requires thermal calibration
TAITherm Empirical	No integration required, easy to calibrate, fast	Limited by number of models available, requires some calibration
Reduced Order Modeling	Very fast, able to integrate models of varying complexity	Limited range of applicability, requires a lot of data to calibrate

Conclusions

- EV/HEV design affects vehicle range, performance, lifetime, safety, and driver comfort
- Environmental loading is important when considering HVAC loading, BTMS performance, and BMS performance limiting capabilities for safety and reliability
- Using simulation saves money on testing, improves overall performance, allows the modeler to consider use cases which are difficult to test, and allows rapid evaluation of design alternatives
- Co-simulation and multi-physics modeling techniques provide an efficient way to ensure robust, safe, and durable designs that will meet customer expectations for the entire life of the vehicle

Questions?

ThermoAnalytics