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Agenda

EV/HEV Design

Battery Modeling
Drive Cycle Simulation
Cabin Comfort
Lifetime and Durability
Design for Safety
Multi-Physics Coupling




EV Component
Modeling

Electric motors
Electrical inverters and
wiring

Heat exchangers and
cold plates

Vehicle energy
management

Battery packs
System Modeling
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EV Operating Temperature Ranges

EV components have
vastly different
operating ranges than
ICE vehicle components

EV thermal
Mmanagement systems
require separate
coolant loops that
exchange heat with one
another

Ambient Operating Range
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Environmental effects on EV Range

EV range is strongly influenced by temperature
Depends on battery type

Average energy consumption per mile [Whimi]
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Energy consumption per mile averaged across a fleet of Nissan Leaf EVs over

Influence of temperature on energy performance of different battery types
a full year. (Environ. Sci. Technol. 49, 2015.)
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HVAC Impact

Climate control loads cause significant range
reduction

17-37% in summer*

17-54% in winter*

Possible design improvements

Improved insulation
Correlation of BTMS with the HVAC system

Thermo-electric generator based heat recovery
systems

Proper HVAC sizing for cabin comfort

* Energies 2019, 12, 946
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Current Challenges in EV Batteries

Thermal Management

Life span: increasing both cycle stability and calendar age

Performance in harsh environments:
Difficult to optimize performance for wide range for temperatures

Capacity
Driving range
Charging time
Safety: i.e. avoiding thermal runaway

Cost
Need to be reduced to compete with gasoline vehicles
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TAITherm Battery Thermal-Electric
Approach

Electrical and thermal behaviors are coupled

Battery resistance depends on temperature and DoD

T depends on resistive heating and chemical reactions

Battery models compute an imposed heat on the battery geometry
Imposed heat computed by solving electrical circuit equations



TAITherm Battery Models Overview
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Transient Drive Cycle Simulation







CFD Coupling

Spatial variance occurs for
heat transfer coefficients

Flow re-direction at bends
Secondary flow
Local turbulence

Heat transfer
enhancement structures

Converging and diverging
streams
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Edit Table Variable

Column Editor = Table Editor | DOE Plot
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Efficient Use of Computational Resources

600 Full vehicle thermal simulations are orders of magnitude faster
than CFD simulations, with far fewer computational resources
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Human Thermal Extension

Human Physiology Model
20+ body segments
Thermal Model

Metabolic Heating
Shivering
Respiration
Sweating

Peripheral Vasomotion

DIRECT \
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Predicts Skin Temp, Interior Tissue Temps, Blood Pool Temp, Core Temp

Berkeley Comfort Modeling: Is the passenger comfortable?
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Methods Available

TAITherm Standalone
Single Fluid Node

TAITherm Standalone
Multiple Fluid Node

TAITherm
1D Coupling (GT Suite

& Amesim)
20-10k Cells

TAITherm
CFD Coupling
Millions of Cells

TAITherm
Manikin Coupling
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Localized heating and cooling

eated Seat

Heated Steering Wheel



Battery Ageing Mechanisms

Battery ageing is caused by many complex and coupled electrochemical mechanisms

First principles models exist, but are highly battery chemistry dependent and not yet able to capture all

relevant mechanisms.

A more general semi-empirical model is more practical and can be applied to multiple different batteries by

refitting the parameters
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Simulation Approach: NREL Lifetime Outputs
/ Solution is Coupled at Each Life\

Vehicle Drive cycles
e Speed vs. time traces
e Charging assumptions

Vehicle
(Dyno Test)

e -1o B

Hill climb with trailer

Three phases:
- Conditioning

- Soak

20 min

30 min 20 min

CONDITIONING

SOAK

Battery power profile
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TAITherm
Battery

Battery stress statistics
e T(t), V(t), ASOC(t), ...

NREL

Model

Battery Life
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State-Of-Health (SOH) Results
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Thermal Runaway

If the battery temperature gets too high, thermal runaway can happen
This can be due to a certain drive cycle on a hot day or a sudden short-circuit

European law prescribes a mininum time of 5 minutes between the start of
thermal run-away and the car to catch fire

The requires proper management of the heat propagation

E


https://youtu.be/hwXccpeN6Qc




NREL Thermal Runaway Model
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Thermal Runaway

00:00:00 00:00:00 00:00:00
Temperature Temperature Temperature

20.0 55.0 90.0 125.0 160.0 195.0 230.0 265.0 300.0 200 55.0 90.0 125.0 160.0 195.0 230.0 265.0 300.0 20.0 55.0 90.0 125.0 160.0 195.0 230.0 265.0 300.0

Baseline Wall insulation 10mm Wall insulation 10mm
+

external cooling

5 min 12 min 29 min



Multi-Physics, Scripting, and Automation

CAE often requires complex processes
Coupling different physics
Simplified analysis
Drive cycle / dynamic driving
Lifecycle modeling
Multi-simulation tasks
Sensitivity studies / DoE
Optimization
These processes may involve multiple pieces of software, customized
scripts, and other domain-specific ‘glue’ to automate

CoTherm intends to provide an efficient, versatile, and intuitive way of
implementing these processes
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Process Automation and CAE Coupling
TAITherm Optimizer

* Improve designs with an
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Co-Simulation Approach Comparison

3D-3D

1D/2D - 3D

1D/2D/3D — Nodal Net

TAITherm Empirical

Reduced Order Modeling

Highly accurate

Moderately accurate

Easy to integrate, moderately fast

No integration required, easy to calibrate,

fast

Very fast, able to integrate models of
varying complexity

Slow, difficult to integrate

Moderately slow, difficult to integrate

Requires thermal calibration

Limited by number of models available,

requires some calibration

Limited range of applicability, requires a lot of
data to calibrate



Conclusions

EV/HEV design affects vehicle range, performance, lifetime, safety, and driver
comfort

Environmental loading is important when considering HVAC loading, BTMS
performance, and BMS performance limiting capabilities for safety and reliability

Using simulation saves money on testing, improves overall performance, allows
the modeler to consider use cases which are difficult to test, and allows rapid
evaluation of design alternatives

Co-simulation and multi-physics modeling techniques provide an efficient way to
ensure robust, safe, and durable designs that will meet customer expectations for
the entire life of the vehicle



Questions?

ElThermoAnalytics
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