# Find your FIT

A Comparison of Strategies for Simulating Vehicle Heat Protection Test Cycles in 3D

### **The Thermal Management Process**





### **The Thermal Management Process**

The ideal process minimizes the cost of each step





# What is the most effective thermal management process?

- Needs to support high volume production work
- Easily adapt to specialized jobs
- Minimize resource requirements















### **Different Strategies**

- CHT Conjugate Heat Transfer
- Step-wise
- Psuedo Transient
- 1D Surrogate
- 2D surrogate





#### Conclusions

#### **Conjugate Heat Transfer**

- Solves as one solution
- Very detailed



#### **CFD** Coupling







Test Cycle Duration(s)

#### **Psuedo-Transient**





#### Approach

#### Results





### **Pseudo-Transient**





### **Pseudo-Transient**





#### **Psuedo-Transient**





|    | Methods                                            | Approach                                                                 | Results                                                     | Conclusions                                                                                              |  |  |  |  |
|----|----------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | Surrogate Modeling Process                         |                                                                          |                                                             |                                                                                                          |  |  |  |  |
|    | Sample range of<br>vehicle operating<br>conditions | Compute a steady<br>state CHT solution<br>at each operating<br>condition | Fit an equation to the<br>convective boundary<br>conditions | Run transient thermal model<br>using surrogate model to<br>approximate convective<br>boundary conditions |  |  |  |  |
| 1D | Uniform<br>Sampling of<br>Vehicle Speed            | Coupled CHT<br>solutions                                                 | Linear<br>Interpolation                                     | Leveraged Existing<br>Software Features                                                                  |  |  |  |  |
| 2D | OLHC of Vehicle<br>Speed and Inlet<br>Temperature  | Coupled CHT<br>solutions                                                 | Gaussian<br>Anisotropic<br>Kriging                          | Custom Developed<br>Coupling Harness                                                                     |  |  |  |  |

- - -

|      | Traditional Conjugate Heat<br>Transfer Simulation                                     | Stepwise Transient                                                         | Surrogate Models                                                                                                                                 | Psuedo Transient                                                            |
|------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Pros | <ul><li>High Accuracy</li><li>Easiest process</li></ul>                               | <ul> <li>Reduced runtimes</li> <li>Flexible resource allocation</li> </ul> | <ul> <li>Reduced runtimes</li> <li>Models can be reused</li> <li>Flexible resource allocation</li> <li>Flexible post analysis options</li> </ul> | <ul> <li>Reduced runtimes</li> <li>Flexible resource allocation</li> </ul>  |
| Cons | <ul> <li>Large computational costs</li> <li>Inflexible resource allocation</li> </ul> | <ul> <li>Steady fluids<br/>assumption</li> </ul>                           | <ul> <li>Many samples required</li> <li>Complex process</li> <li>Steady sample point<br/>assumption</li> </ul>                                   | <ul> <li>Complex process</li> <li>Steady state fluid assumptions</li> </ul> |

### CoTherm

Process automation software from ThermoAnalytics



### **The Thermal Management Process**





### **Drive Cycle Extension – 1D Surrogate**

Inputs:

- Thermal/CFD models
- Drive cycle data

• Determines coupling points based on Drive Cycle Profile

Runs steady thermal-CFD cases

CoTherm

- Imports CFD results into transient thermal model
- Runs transient thermal model

• Output:

 Transient thermal model



### **Psuedo Transient Method**

Inputs:

- Base Thermal/CFD models
- Boundary conditions •
- Coupling interval •

• Automatically sets up SS CFD models

CoTherm

- Couples Thermal and CFD models
- Merges thermal models

Output:

Merged thermal model with all CFD points







#### Approach

#### Results

- Selected highly simplified engine bay geometry
  - 34,602 surface elements
  - 275,748 volume elements



#### Approach

#### Results







#### Approach













#### Approach



#### Surrogate Model Transient Prediction – Temperature



Methods Approach

#### Results

Conclusions



#### **Psuedo Transient Prediction – Temperature**





Ā

#### Approach

#### Results



Approach



■ 1D Surrogate ◆ Stepwise 30s ● 2D Surrogate ▲ Psuedo-Transient 30s ■ CHT Solve Time

Methods Approach Results Conclusions





# Methods Approach Results

Psuedo-Transient Manual

Psuedo-Transient 30s Psuedo-Transient 60s Psuedo-Transient 120s





#### Results

Cycle 2



◆ Psuedo-Transient 30s ● Psuedo-Transient 60s ■ Psuedo-Transient 120s ▲ Psuedo-Transient Manual

Approach

#### Results







#### Approach

Results

- Significant cost differences between the methods
- Step-wise and Psuedo-Transient coupling offers a good balance of accuracy and run time
- Finding the number of coupling points that balance accuracy and computational costs is important
- Surrogate models offer significant savings, but sacrifice accuracy
- Further Research
  - Model sizes
  - Time Stepping
  - Other coupling methods
  - Sampling method for surrogate models
  - Surrogate model interpolation methods



### Find your FIT



#### techsupport@thermoanalytics.com



## **Questions?**

Thank you for your attention

**ThermoAnalytics** 

### **Technical Support**

- <u>https://support.thermoanalytics.com</u>
  - Submit & Check Status of Requests
    - techsupport@thermoanalytics.com
    - Secure Large File Uploads
  - Software Downloads
  - Technical Library
    - Webinar Videos
    - FAQs
    - Papers & Presentations
    - Spreadsheet Tools
    - Training Videos
  - Feature Requests



### **Thanks and References**



- 1. Disch, M., Widdecke, N., Wiedemann, J., Reister, H. et al., "Numerical Simulation of the Transient Heat-Up of a Passenger Vehicle during a Trailer Towing Uphill Drive," SAE Technical Paper 2013-01-0873, 2013
- 2. Kaushik, S., "Thermal Management of a Vehicle's Underhood and Underbody Using Appropriate Math-Based Analytical Tools and Methodologies," SAE Technical Paper 2007-01-1395, 2007
- 3. Pryor, J., Pierce, M., Fremond, E., and Michou, Y., "Development of Transient Simulation Methodologies for Underhood Hot Spot Analysis of a Truck," SAE Technical Paper 2011-01-0651, 2011
- 4. Haehndel, K., Pere, A., Frank, T., Christel, F. et al., "A Numerical Investigation of Dampening Dynamic Profiles for the Application in Transient Vehicle Thermal Management Simulations," SAE Technical Paper 2014-01-0642, 2014

