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The Thermal Management Process

The ideal process minimizes the cost of each step

Source , Model :
Meshing , Calculation
Inputs ) Construction

Post Processing

Model Revision x
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Results




What is the most effective thermal
management process?

* Needs to support high volume production work
* Easily adapt to specialized jobs
* Minimize resource requirements
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Different Strategies

CHT - Conjugate Heat Transfer
* Step-wise

Psuedo Transient
* 1D Surrogate
* 2D surrogate
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Methods Approach

Conjugate Heat Transfer

e Solves as one solution
* \Very detailed



CFD Coupling

Convection coefficients or fluid
velocities
& fluid temperatures
(h and Tfluid)
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Surface temps
(Twall)

TAITherm




Methods Approach
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Approach

Psuedo-Transient
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Methods Approach

wrcand ™
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Run Thermal model with initial CFD

CFD Data from time = 4,
CFED Data from time = 0 after 1st transient coupling
loop
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Pseudo-Transient

Heat

Transfer

Coefficient

t

Tw

wrc and T —
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Run Thermal model with updated CFD

Time
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Pseudo-Transient

Run Thermal model with updated CFD

Coefficient
\

Heat
Transfer

Time
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Approach

Psuedo-Transient

E
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Approach

Surrogate Modeling Process

Sample range of

vehicle operating
conditions

Uniform
Sampling of
Vehicle Speed

OLHC of Vehicle
Speed and Inlet
Temperature

et il Rt

v

Compute a steady

state CHT solution

at each operating
condition

Fit an equation to the

Coupled CHT
solutions

Coupled CHT
solutions

Run transient thermal model
using surrogate model to

A\ 4

convective boundary
conditions

Linear
Interpolation

Gaussian
Anisotropic
Kriging

v

approximate convective
boundary conditions

Leveraged Existing
Software Features

Custom Developed
Coupling Harness



Approach

Traditional Conjugate Heat
Transfer Simulation

Stepwise Transient

Surrogate Models

Psuedo Transient

Reduced runtimes

Reduced runtimes

Q| i * Reduced runtimes
2 High Accuracy . Models can be reused Flexible resource
° Easiest process ° Flexible resource lexibl I . .
allocation Flexible resource allocation allocation
Flexible post analysis
options
: : [ mplex process
@ e Large computational e Steady fluids Many samples required Complex p _
o . Complex process Steady state fluid
© costs assumption Steady sample point assumptions
* Inflexible resource y . Piep P
allocation assumption



CoTherm

Process automation software from ThermoAnalyti




The Thermal Management Process

Q CoTherm

Source Model

Meshing , Calculation
Inputs ) Construction

Post Processing

Model Revision x
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Results

19

E



Drive Cycle Extension — 1D Surrogate

O CoTherm

* Determines coupling
points based on Drive

Inbuts: Cycle Profile
puts: Runs steady thermal-CFD
Thermal/CFD models Cases |
, Imports CFD results into
Drive cycle data transient thermal model

Runs transient thermal
model

Output:

Transient thermal
model
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Psuedo Transient Method

O CoTherm

* Automatically sets
up SS CFD models

Inputs:
Base Thermal/CFD * Couples Thermal and
models - CFD models

Boundary conditions * Merges thermal
Coupling interval models

Output:

Merged thermal
model with all CFD
points



* Selected highly simplified engine
bay geometry
* 34,602 surface elements
275,748 volume elements
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Methods Approach
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Methods Approach

Inlet

330

325

320

315

310

Inlet Speed (m/s)
Inlet Temperature (K)

305 \ / Pressure Qutlet
295
0 500 1000 1500 2000

Time (s)

Inlet Speed oo Inlet Tem perature

Pressure Qutlet



Cycle 1 Cycle 2 Cycle 3
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Cycle 1 Cycle 2 Cycle 3
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Temperature (K)
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Stepwise Transient Prediction - Temperature
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Methods Approach

6 node average ——

Psuedo Transient Prediction — Temperature
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Conclusions
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Methods Approach
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Methods Approach
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Temperature (K)
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RMSE (K)
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Methods Approach

Cycle 2

2.68

2.675

2.67

2.665

RMSE (K)

2.655

2.65

2.645

@ Psuedo-Transient 30s

40 60

80

Number of Coupling Points

Psuedo-Transient 60s

m Psuedo-Transient 120s

100 120

A Psuedo-Transient Manual

140

36

E



25000

20000

15000

Time (s)

10000

5000

1D Surrogate

Stepwise 30s

Total Solve Time

Psuedo-Transient
30sec

m Sample Point Computation
Time

Psuedo-Transient
60sec

m CFD RunTime

Psuedo-Transient
120 sec

B Thermal Simulation Time

Psuedo-Transient
Manual Sel ection

(6]

(6]

Speed (m/s)
= NN
o

[EEN
o u O

Cycle 3

1000 2000 3000
Time (s)

4000

37

E



Methods Approach Results

Significant cost differences between the methods

Step-wise and Psuedo-Transient coupling offers a good balance of accuracy and run time

Finding the number of coupling points that balance accuracy and computational costs is important
Surrogate models offer significant savings, but sacrifice accuracy

Further Research

Model sizes

Time Stepping

Other coupling methods

Sampling method for surrogate models
Surrogate model interpolation methods
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Questions?

Thank you for your attention

ElThermoAnalytics



Technical Support

https://support.thermoanalytics.com

#HThermoAnalytics’
TOTAL THERMAL SOLUTIONS

HOME  SUBMITAREQUEST CHECK YOUR EXISTING REQUESTS

Submit & Check Status of Requests
techsupport@thermoanalytics.com
Secure Large File Uploads

Software Downloads

Technical Library
Webinar Videos
FAQs
Papers & Presentations
Spreadsheet Tools
Training Videos
Feature Requests

i ThermoAna

TOTAL THERMAL SOLUTION!

WELCOME

Stay updated with announcements, access

technical resources, and submit support
requests.

How can we help you? Contact Us

By Telephone [US Hours)

Announcements -

6) 482-9755

What's New? 61 » Upcoming Events (5 »
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