Exhaust Streams and Component Heat Protection

Tim Viola
Exhaust Streams and Component Heat Protection

• Exhaust Stream Feature
• Hot components in an engine compartment
• Updates from 12.4 to 12.5 ease exhaust stream setup
• Implement a fix to resolve the issue
• Unrealized effects of the implemented fix
The Task at Hand: Evaluate packaged components in an engine compartment that could potentially be getting too hot
Model Scenario

1. From a cold/off state of 20°C

2. The vehicle turns on

3. Set to run for a 30 minute transient case @ 120 kph
Thermal Model Heat Contributors

- Engine
- Cooling pack
- Transmission
- Exhaust components
ThermoAnalytics’ exhaust stream feature is used to model convection correlations and heating within the exhaust components.
Exhaust Tool Improvements from 12.4 to 12.5

• Sub-streams can now be categorized as being one of three types:
 • Single inlet, single outlet (SISO)
 • Multiple inlet, single outlet (MISO)
 • Single inlet, multiple outlet (SIMO)
Exhaust Stream Updated Model Setup

• Model setup is simplified with the feature improvements
 • Components: 18 > 11
 • Stream points: 22 > 13
 • Number of Sub-Streams: 17 > 2

• Model now only requires 2 Sub-Streams
 • 1 MISO
 • 1 SIMO
Thermal Model: Exhaust Stream
Battery, fuse box, and fluid reservoirs exceeding threshold

Design temperatures for packaged components set to 100°C
Substitute a double-walled exhaust pipe from the turbos to the catalytic converters.
Add insulation to the hot side of the turbo
Maximum Design Temperature

Baseline

Double-walled exhaust pipe w/ insulated turbo
Unexpected rear bumper temperature
Other Fixes to Consider

- Adding insulative layers was just one of many solutions
- Many others could easily be implemented
 - Add double-walled exhaust pipe
 - Insulate additional exhaust components
 - Re-direct ambient air flow
 - Change the surface emissivity of the components and/or exhaust
 - Change surface emissivity on the exhaust
 - Add shielding geometry
 - Translate critical components further from heat sources
 - Re-route exhaust pipe (would require geometry change)
 - Multiple fixes at once
Conclusions

• TAITherm is well suited to assess component temperatures in a vehicle model
• The exhaust stream feature can handle convective heating in an exhaust network with minimal required model setup
• Exhaust stream modeling has been simplified, resulting in easier model setup
• TAITherm 12.5 will be available December 12!
 • Advanced exhaust stream post processing features
 • Thermal links enhancements
Questions?

Thank you for attending!
Technical Support

• https://support.thermoanalytics.com
 • Submit & Check Status of Requests
 • techsupport@thermoanalytics.com
 • Secure Large File Uploads
• Software Downloads
• Technical Library
 • Webinar Videos
 • FAQs
 • Papers & Presentations
 • Spreadsheet Tools
 • Training Videos
• Feature Requests