Vehicle Cabin Energy Management Considerations in Electric Vehicles

ThermoAnalytics Webinar August 20, 2020

Zachary Edel, Ph.D.

Widespread adoption of EVs by consumers depends on:

- Range satisfaction (driver's range anxiety)
- Public and private charging infrastructure
- Vehicle purchase price in comparison to ICE vehicles
- Maintenance costs
- Cost of exploitation
- Reduced greenhouse gas emissions
- Existence of a reasonable thermal comfort in the operation of an EV

EV range is strongly influenced by temperature

Energy consumption per mile averaged across a fleet of Nissan Leaf EVs over a full year. (Environ. Sci. Technol. 49, 2015.) Influence of temperature on energy performance of different battery types (Energies 2019, 12, 946)

Climate control loads cause significant range reduction

- 17-37% in summer*
- 17-54% in winter*

Impact of cabin heating on EV driving range in 20F (-7C) ambient

EV Power consumption with operating the airconditioner in different environments. Shibata et. al. JEPE 9 (2015) 4

Active technologies for HVAC efficiency improvement

- Localized heating/cooling
- Heat Pumps: capture heat from the atmosphere to heat cabin
- Thermoelectric generator: use exhaust heat to generate electricity for HVAC
- Ambient Air circulation: allow heat transfer to continue even after engine and HVAC system have shut off

Resistive heater and electric compressor

- The simplest adaptation of an ICE HVAC for EVs is to use a resistive heater and electric refrigerant compressor for cooling
- Some heat can be recovered from the electric motor
- Causes up to 50% reduction in EV range
- Rely on a single point sensor for temperature control
- Alternative options are desired

Positive Temperature Coefficient (PTC) Heaters

- Provides rapid, noiseless warming of cabin and windshield defrost, independent of waste heat
- Made of specialized heating discs from advanced ceramic materials
 - Self-regulating
- Poor efficiency:
 - Can provide sufficient heat to warm cabin, but energy is derived from battery electricity, reducing driving range
 - At -7C temperatures can take 6kW power to heat cabin. About the same power needed to propel small vehicle at 50km/h.

Heat Pumps

- Power consumption can be ~1/3 of PTC heating systems of same capacity
- Heating and cooling in single refrigerant circuit with reversible flow. Direction of flow determines heating or cooling.
- Dominant AC system in EVs
- Disadvantage: Slow warm up times compared with PTC heaters
 - May be supplemented with PTC for fast response

Localized heating and cooling

Heated Steering Wheel

Heated Seat

Radiant Panels

Human Thermal Comfort

"That condition of mind that expresses satisfaction with the thermal environment" (ASHRAE, 2005)

Equivalent temperature is not enough

- Test subject reports feeling warm while temperature is still only 15°C
- Then, report feeling cool while the temperature is 22°C
- Average environment temperature is a poor way to predict sensation in a transient scenario

Taken from: Hepokoski, SAE TMSS 2018, session TMSS200

TAITherm Human Thermal Extension

- Human Thermal Model:
 - Multiple (20+) body segments
 - Multiple tissue types per segment
- Model Inputs
 - Clothing thermal properties
 - Activity level
 - Anatomical description
- Model Outputs
 - Clothing & Skin temperatures
 - Core body temperature
 - Interior tissue & Blood pool temperature
 - Thermal Sensation & Comfort

Thermoregulation Model

- Heat Transfer with the Environment
- Metabolic heating (activity)
- Shivering
- Sweating
- Vasomotion

Thermal Sensation & Comfort

- Sensation How hot or how cold something is perceived to feel
- Comfort Whether the sensation makes the person feel good or bad

Design Objectives of Common Cabin Studies

- 1. Reduce energy consumption
- 2. Balance occupant comfort and vehicle range
- 3. Shorten time to comfort
- 4. Maintain comfort
 - Improve/Study Localized Comfort
 - Transient Environments (warm up & cool-down)
 - Autonomous Seating Design

Methods Available

TAITherm Setup – Heated Surfaces

- Energy use optimization using CoTherm CAE process automation software
- Three cases considered with variable power to heating sources
 - HVAC only, foot heaters
 - HVAC only, panel heaters
 - HVAC + localized heating
 - Radiant panels
 - Seat heater
 - Steering wheel heater

Case Study: Cabin Comfort Energy Optimization with Localized Heating

CoTherm Optimization Process

Inputs

Variables with bounds

Cost Function

Optimization Method

Stopping Criteria

Runs optimization to determine best variable values

Optimized variables that minimize cost function based on user requirements

CoTherm Optimization Process

Import boundary conditions and run the thermal model

Read time to comfort from the berkeleycomfort text file

Compute the power used during the run

Calculate the cost function

Optimization Inputs

Thermal Results

HVAC Floor Mode

HVAC Panel Mode

Heated Surfaces Mode

Energy Comparison

- HVAC directed at upper body: 3376W
- HVAC directed at upper body and Legs: 3334W
- HVAC + Heating panels
 - HVAC: 600W
 - Seat: 66W
 - Overhead panel: 75W
 - Feet panel: 159W
 - Steering wheel: 42W
 Total: 942W

HVAC directed at F Upper Body Up 3376 W

HVAC directed at Upper Body and Legs 3334 W

HVAC, Heated foot panel & head panel, seat & steering wheel 942 W

Conclusion: Local comfort can greatly increase overall comfort

- Local comfort provides stable comfort over time
- Local comfort uses much less energy
 - HVAC only: 3334W during 10 minutes = 555Wh
 - HVAC + heated surfaces: 942W during 10 minutes = 157Wh

Possible Next Steps

Add additional fidelity to the fluid node and velocity model to better represent different HVAC modes and settings

Add additional HVAC setting including re-circulation

Explore additional variables for the optimization runs (ex. Glass properties)

Explore different cost functions

Explore different ways to apply heat to the model (other than just one flat value)

THERMO ANALYTICS

Thank you

US Location

ThermoAnalytics HQ 23440 Airpark Blvd. Calumet, MI 49913

Zachary Edel, Ph.D.

Office: +1 (906) 482-9560 x138 zje@thermoanalytics.com www.thermoanalytics.com

