New Features TAITherm 13.1.0 & CoTherm 2.2.0

Lauren Tetzloff – Thermal & CFD Engineer

TAITherm 13.1.0

ThermoAnalytics

Moisture transport through clothing materials

- Track moisture transport through permeable materials
- Track moisture accumulation in layers and on surfaces

Benefits

layers

Include latent heat in

More accurate human

models with hot to

Moisture Transport Simple Example

Dry, cool ambient conditions

Moisture Transport Simple Example

What automotive applications can moisture transport be used for currently?

- Track ice and liquid on surfaces
- Predict sublimation, melting, evaporation, and condensation
- Compute the latent heat loss / gain on surfaces during phase change
- Track moisture in fabrics (such as seats)

Battery Setup in the GUI

Battery model setup integrated into main application

Battery Setup												
Enable Battery Modeling Extension												
Lieu di al Tura ADEL En évitat Can ét												
Model Type NREL Equivalent Circuit V Source Type Current	~											
Cutoff Voltage (mV) Value 2500 Imposed Current (A) Value -4.69												
Cells Buses												
ID Name Associated Geometry Cathode Bus Anode Bus Initial Depth of Discharge Capacity (A-hr) Resistance Scale Factor Elector	ctrode Area Heating C (mm²) Distribution Re											
1 Cell_1 1: cell_1; 2: cell_1_top; 3: cell Pack Positive T Pack Negative 0 2.345 1 Value	e: 3634 Back Only Fals											
	>											
Import Export	Close											

Benefits

- Familiar GUI presentation and model setup workflow
- Reduced model setup time
- Fewer model setup errors
- Reduced data
 management effort

T A

Exhaust Stream Enhancements

- More robust stream generation
- Improved convection behavior for low/zero flow

Benefits

- Faster model setup
- More accurate results
- Now supports key-off scenarios

Improved Application Performance

- Reduced application memory usage by ~8%
- Faster interaction with the part list
- Post Process Design Temperatures much faster

Benefits

- Less time waiting for application
- Increased productivity
- More efficient use of available hardware resources

Re-use 3D Solid Mesh from Finite Element Analyses

- FEA computed from shared vertices, so supported tetrahedrons on top of hexahedrons
- New feature enables TAITherm to compute conduction across these *non-conformal* faces (shared vertices, but different faces)

Benefits

 Save time by re-using mesh that was created for other physics simulations

New solver option to improve performance of some previously unstable models

- New option stabilizes some large models that were unstable in previous versions
- Models that could be stabilized with conservative solver settings run MUCH faster in conjunction with this new setting

А	dvanced Solu	Enable Multiple Radiation Sweeps	
iolution Method <u>Partial-Direct</u> Multi-Grid	Accuracy Se Faste	Number of Radiation Sweeps	
Aulti-Grid Options Residual Le-08	ilumber	2 \$)
Maximum # Inner Iterations 30 \$ Relaxation \$			
0.70 0 Matrix Update Frequency		parent Area - Specular Surfaces	
✓ Enable Multiple Radiation Sweeps Number of Radiation Sweeps 2	· · · ·	1 Calculate Optimal <u>Value</u>	
☑ Optimize <u>N</u> ode Ordering	View Factor Patch Ray Ca Calculate from Elen Calculate from Patc	Casting Iment Subdivisions and Average for Patch tch Centroid Only	
hermal Link Optimization Ο <u>S</u> peed Θ Accuracχ	View Factor Ray Pattern <u>H</u>elical Circular 	View Factor/Apparent Area Search Space	
olume Element Optimization <u>R</u> esources Accuracy	Reduce Solar Apparer	deg) 2	
Ōĸ	<u>C</u> ancel		

View Based Statistics

- Graphics view statistics (including dTrss based on diffuse radiance in the graphics window)
 - Temperature, Apparent temperature, diffuse radiance
 - Min, max, avg, stdev, dTrss based on pixles in the graphics window
 - Export table and images for a list of views

:							Browse
iew Settings							
	Start		End		Interval		
ïme Step	0	-	0	-	1	*	1 Time Step
Azimuth (°)	0	÷	360	*	20	-	19 Azimuths
levation (°)	0	÷	0	-	1	+	1 Elevation
19 Total View	/ Settings						
xport Optior	าร		Write Image	s w	ith CSV		
Geometri	c Statistics		Image Base Na	me	image		
Thermal S	Statistics		🗹 Embed Ima	ges	with Statistics		
Radiance	Statistics		Add Color R	lam	p to Images		
Apparent	Temperature Statis	tics	Write Simpli	fied	Images		

Berkeley Thermal Comfort Improvements

- Bring number of segments from 16 up to 19 in alignment with the Berkeley Papers
 - Breath
 - Face
 - Neck
- Apply smoothing to the overall sensation output

 NOTE: Any models using Berkeley Comfort will need to be updated with a new body part map file

Benefits

- Improved simulation accuracy
- Improved design decisions/confidence

Demo: Defrost vehicle windows

Using Moisture Feature

Temperature (°C)

TAI

-----Zone 5 - Moisture -----Zone 6 - Moisture -----Zone 7 - Moisture

 Phase change occurs when elements stay at 0°C

Latent Heat Results

 When the liquid fully evaporates, latent heat flux will go to zero

 $m\frac{dh}{dt} = \dot{\mathbb{Q}} + \sum_{j} \frac{\omega_{j} - \omega_{i}}{r_{i,j}} (h_{i/j} - h_{vap}) - \dot{m}_{l}(h_{l} - h_{liq}) + \dot{m}_{v}(h_{v} - h_{vap}) - \frac{\dot{m}_{evap} [h_{vap} - h_{liq}]}{r_{i,j}}$

Liquid Content

Demo: Sweating Human

Moisture content changes over time

Moisture model vs Evaporation Model

- The difference in average skin temperature is seen after the human enters a neutral environment again
- This is due to excess sweat being evaporated when the moisture model is used

Demo: Battery GUI

Enhanced battery setup

Post Processing – Terminal Voltage

- A log file: *NRELeqcCell.tdf.nreleqc.logfile.txt* is created in folder that the model was run
- The exponential drop at the end of the simulation can easily be observed

CoTherm 2.2.0

ThermoAnalytics

Multi-Selection

- Added multi-select cut/copy/paste for Resources and Tasks.
- Added rubber-band selection in Process Canvas.
 - Left click + drag is now selection instead of pan.
 - Middle click is now used to pan.

Benefits

 Eases process set-up and editing by reducing multiple manual steps

Sub-Process Groups

- Can contain multiple CoTherm Sub-Processes and Optimization Sub-Processes.
- Sub-Processes can be added to a group via dragand-drop on the Process Canvas.

Benefits

- Allows for additional hierarchy of Sub-Processes
- Efficient way to view process when using parallel tasks

Parallel Task Execution

 Grouped Sub-Processes can be run in serial or parallel

		_	
Inspector	1	8	×
Sub-Process Group			
Filter			
Property	Value		
Description	Run simulations		
lcon	Group		
Notes	The Run simulations sub-process group contains separate sub-proc	ess	;
Connection	Copy results		
Sub-Processes	3 Sub-Processes		
Parallel Execution	n 🗹		

Benefits

• Allows for faster run time by reducing the time one software is waiting for another to complete

CoTherm 2.1.0 - Fully transient thermal-CFD coupling

• With new CFD Run Tasks, various transient coupling strategies can be automated:

Benefits

• Allows simulating transient fluid dynamics along with full multimode heat transfer effects in an efficient manner

Time ->																							
Two-way single- exchange coupling at	TAITherm					TAITherm																	
				+	г		-	-	H			-	-		r h		+				-	T	, ,
fixed coupling interval	CF		CFD	D			CFD					CFD						 CFD					

Message Window

- Warnings and errors are now highlighted in the Message Window.
- Output from Tools and Tasks can now be filtered in the Message Window.
- Added XML-formatted log file containing metadata for each message.

Benefits

- Customizable options allow the user more control
- Allows for better time tracking
- Easier to find problems
- Avoids interweaved messages with parallel task execution

Additional CoTherm Enhancements

Tasks

- Added support for importing and exporting multi-region OpenFOAM cases.
- Added Compound Task group to contain Sub-Process related Tasks.

Demo: Parallel Task Execution

Technical Support

- https://support.thermoanalytics.com
 - Submit & Check Status of Requests
 - techsupport@thermoanalytics.com
 - Secure Large File Uploads
 - Software Downloads
 - Technical Library
 - Webinar Videos
 - FAQs
 - Papers & Presentations
 - Spreadsheet Tools
 - Training Videos

Questions?

Thank you for attending!

ThermoAnalytics

References

[1] M. Hepokoski, S. Peck, S. Gupta, J. Coffel, M. Decker and K. Isherwood, "Development of an Advanced Clothing Moisture Model," in 12th International Manikin and Modelling Meeting, St. Gallen, Switzerland, August 29-31, 2018

